Analysis of Algorithms
CS 375, Fall 2019
Homework 12
Due AT THE BEGINNING OF CLASS Monday, November 4

• From your textbook (CLRS), please read Chapters 22.3–22.4.

• Also, please read CLRS Chapter 15, pages 359–360, 378–396. These are not the topic of this HW, but we will be discussing this material in class.

• A general note: When writing up your homework, please write neatly and explain your answers clearly, giving all details needed to make your answers easy to understand. Graders may not award credit to incomplete or illegible solutions. Clear communication is the point, on every assignment.

Exercises

1. CLRS 22.4-1 (pg. 614).

2. A pair of rabbits, one male and one female, is placed in a large sealed enclosure. How many pairs of rabbits will be there in a year if the initial pair are newborn and all rabbit pairs are not fertile during their first month of life but thereafter give birth to one new male / female pair at the end of every month?

As always, please explain your answer; here, a short explanation (3–4 sentences or so) could suffice, as long as it contains the ideas underlying the solution.

3. Find the number of different ways to climb an \(n \)-stair staircase if each step is either one or two stairs. (For example, a 3-stair staircase can be climbed three ways: 1-1-1, 1-2, or 2-1.)

As always, be sure to include a short explanation (a few sentences) of your answer.

4. Consider a rectangle whose side lengths are two consecutive Fibonacci numbers. (Of course, neither of them is 0.) Such a rectangle could be, for example, 3 by 5, or 8 by 13, or 21 by 34, etc.

 (a) Give a recursive algorithm to dissect such a rectangle into squares such that no more than two of the resulting squares are the same size. (For example, if you had two 3 by 3 squares, you could have at most one 4 by 4 square.) As always, be sure to give an English description of the algorithm, explaining the main points of its design—pseudocode is very helpful for algorithms, but a pseudocode presentation without an English explanation will not receive full credit.

 (b) What is the time complexity of your algorithm in part 4a? As always, fully explain your answer, and be sure to explicitly say what each variable in your complexity class stands for (e.g., if you’re presenting a \(\Theta(n^3) \) algorithm, be sure to say what \(n \) refers to).