Histograms, kernel density estimation, and probability

Oliver W. Layton

CS251: Data analysis and visualization

Lecture 12, Fall 2018

Monday March 4
Plan

- Histograms
- Kernel density estimation
- Probability and random variables
- Prior probability
Histograms

- Visualize counts (or frequency data) as a function of a *discrete*, ordered factor OR quantitative data (numeric ranges)

- For example number of survivors by age on Titanic (Adapted from Wilke, 2019):

<table>
<thead>
<tr>
<th>Age range</th>
<th>Count</th>
<th>Age range</th>
<th>Count</th>
<th>Age range</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>36</td>
<td>31-35</td>
<td>76</td>
<td>61-65</td>
<td>16</td>
</tr>
<tr>
<td>6-10</td>
<td>19</td>
<td>36-40</td>
<td>74</td>
<td>66-70</td>
<td>3</td>
</tr>
<tr>
<td>11-15</td>
<td>18</td>
<td>41-45</td>
<td>54</td>
<td>71-75</td>
<td>3</td>
</tr>
<tr>
<td>16-20</td>
<td>99</td>
<td>46-50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-25</td>
<td>139</td>
<td>51-55</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-30</td>
<td>121</td>
<td>55-60</td>
<td>22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Titanic survivor histogram
The binning problem

• For discrete, quasi-continuous, and continuous quantitative data we must decide on the interval to lump data into a "bar" (bin). i.e. how many bars/bins do we use to visualize the count data?

• Too fine: lose big picture to noise

• Too coarse: lose nuance in data
Binning considerations

• What is the frequency of real change in the distribution? Bin size should show real changes.

• What is the precision of the measurement?
 • Bin size should not be finer than precision.

• What is the purpose of the histogram? Bin size and range should support the goals.

• Always explore multiple bin widths when making histograms.
Multiple histograms

Do not use stacked bar graphs (why?)
Better approach: "pyramid"
Estimating counts at every x-value

- Scenario: We want estimated survivor count for people age 35 (not interested in range 31-35).

- Don't want finer bins. Why?
 - Bin 35 very sensitive to neighbors in sample.

- We can estimate a continuous curve to get counts for EVERY age we'd like, a process called **kernel density estimation**.

- We normalize y-axis within the data range, so it becomes FREQUENCY rather than COUNT.

- Often y-axis called **density**: counts ("mass") per unit space (x).
Kernel density estimate (KDE)
Different parabolic kernel widths
Different parabolic kernel widths (normalized)

\[\sigma = 1 \]

\[\sigma = 5 \]
KDEs are not immune to the binning problem
KDEs are not immune to the binning problem

- As number of data points gets large, shape of kernel (e.g. parabola) matters less.
- When number of data points are comparable to kernel size, KDEs are erratic and unreliable.
KDE boundary problem

- KDEs should only not extend beyond the data range (e.g. ages < 0). If it does, the situation is actually worse than it seems. Why?
KDEs and probability distributions

- KDEs describe a type of empirical probability distribution.
- Rather than fit the data to their own distribution, there are benefits to fitting it to a mathematically-specified (e.g. Gaussian) distribution.
 - Allows us to generalize better (i.e. if we had more data).
 - We can leverage its mathematical properties.
 - Example: Normalized Gaussian (e.g. symmetry, independence of mean and spread, area under curve).
When we plot a probability distribution, the x-axis corresponds to the **random variable (RV)** and the y-axis shows the probability assigned to each value of the RV.

Colored marble example.