K-means algorithm

Oliver W. Layton

CS251: Data analysis and visualization

Lecture 23, Fall 2018

Friday April 5
Plan

• K-means algorithm

• Leader algorithm
K-means

• The most popular algorithm for determining clusters is called **K-means**.

• **Goal**: Divvy up data into *K* distinct clusters to minimize the L^2 distance of group members from the *K* cluster centers.

• Cluster "center" is the mean of all points assigned to that cluster (**centroid**).
K-means algorithm

• Initially, pick K centroids, points in data space (number of dimensions == number of features).

 • Uniform random in feature space OR pick K data points randomly.

• Assign each point to the closest centroid.

• Update centroids to be the mean of data points belonging to each respective cluster.

• Repeat until centroids shift less than some threshold amount.

• Show short Keynote animation
K-means step-by-step
K-means objective

Goal: Minimize the TOTAL Euclidean distance \((J)\) from ALL points to the point that defines membership to their cluster. This is often called the **sum of squared errors (SSE)**.

\[
SSE = \sum_{j=0}^{C-1} \sum_{i=0}^{N-1} (x_i - c_j)^2
\]

For \(C\) cluster centroids and \(N\) data points.
Convergence of K-means as a function of iteration number

Data from two slides back.
K-means is a heuristic

- To assign \(N \) data points to \(K \) clusters, there are \(S(N, K) = \frac{1}{K!} \sum_{k=1}^{K} (-1)^{K-k} \binom{K}{k} k^N \) options!

- 4 clusters, 19 data points: \(10^{10} \) possible assignments — what a nightmare!!

- *There is no a definitive K-means algorithm.* Most options are *heuristic algorithms* that slice through the vast possible clustering space favoring speed using "rules of thumb". They may find "good" solutions; they cannot promise to provide the "best" way to cluster any dataset.

- "The" K-means algorithm defined a few slides back is called *Lloyd's algorithm*. It is a local, greedy search algorithm.

 - It iteratively assigns data point-by-point \(d_i \) to the group with the closest centroid.
Problems with K-means?

1. *Parameter selection*: How do we pick K? What is the optimal value?
 - Let's run K-means on random data, varying K.
 - We will discuss methods to determine #clusters in a dataset very soon.

2. *Distance metric*: How do we define "close" when assigning to centroids?

3. *Sensitivity to initial conditions*: Clustering accuracy and runtime depends on good initial centroids.
K-means results can vary quite a bit

Video credit: https://www.youtube.com/watch?v=BVFG7fd1H30
Improving K-means initialization

- Uniform random selection (points or space) is bad (why?).
- The **K-means**++ weighting spreads out initial K centroids by assigning low probabilities around existing centroids.
- Probability of picking one of the K centroids follows a V-shape distribution.
K-means++ algorithm

• Pick a data point to be centroid 1 according to uniform random distribution.

• Pick next centroid $k \leq K$, weighting each data point x_i probability $p(x_i) = \frac{D(x_i)^2}{\sum_j D(x_j)^2}$, where $D(x)$ defines the shortest distance to any existing centroid.

• Repeat this step until we have K centroids. Run K-means like usual.
Quickly cluster a dataset without specifying K

• The **Leader algorithm** quickly detects clusters without specifying number of clusters K.

• Instead, we divvy up M data points into clusters of radius $\leq T$.

• Definitions

 • **1st Leader $L(1)$**: 1st data point.

 • **Threshold T**: maximum distance from 1st leader to assign data points to the 1st leader's group.
Leader algorithm

- Put all data points into cluster 1 until an data point has distance from $L(1) > T$.
- That data points becomes $L(2)$.
- If possible, put next data point to cluster 1, otherwise cluster 2, otherwise it becomes $L(3)$, etc.
- Benefit: Very efficient. Only 1 pass thru data.